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Abstract

Commencing from a projection-operator description of
N-beam diffraction, the mathematical basis for the
recovery of phase and amplitude information from
a three-beam convergent-beam electron diffraction
pattern is given for both the centrosymmetric and
noncentrosymmetric cases. The algebra is available in
Mathematica Notebook form from the URL ftp:/
ftp.physics.uwa.edu.au/pub/EMC/3BeamAlgebra.nb.

1. Introduction

The direct problem in scattering theory is the determi-
nation of the scattered beam, in amplitude and phase,
as a function of the direction of scattering given the
distribution of electron charge density, electric potential
and nuclear positions responsible for the scattering. In
principle, this direct problem is always soluble in a
straightforward way although the calculations may
become difficult and complicated. The inversion
problem — that of deducing the distribution of scattering
elements from the observed beam intensity as a function
of direction — is much more complex. A classic example
is the so-called phase problem in the scattering of
X-rays, which may prevent the straightforward calcula-
tion of a crystal structure from the observed intensities
of the diffracted beams. Recently, Spence (1998) and
Allen et al. (1998) have considered factors relevant to
N-beam inversion and have explored iterative schemes
for structure analysis.

We consider N-beam elastic scattering of electrons by
crystals investigated by the convergent-beam technique.
Here the general resolvent operator and the related
projection operators into the eigenspaces of the S matrix
provide powerful analytic tools. In particular, in the
three-beam case, they lead to a simple direct inversion
for centrosymmetric crystals and a rather more complex
and difficult inversion for noncentrosymmetric crystals.
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An alternative approach for the case of noncen-
trosymmetric crystals is presented by Moodie et al
(1997).

2. Theory

The N-beam diffraction equations (with neglect of
upper-layer lines) may be expressed in terms of a scat-
tering matrix S(z) which satisfies

S(0) =1, dS/dz=iMS, (1)

where [ is the identity matrix, z is the crystal thickness
and

o v, v
V. ¢ V., -
g s g
M=1lv, V., ¢ - 2

is a constant Hermitian matrix with a characteristic
equation

AW AV 2N+ (=DVEy =0, (3)

whose roots A, A,, ... are all real.

In this formulation, the orientation of the incident
beam is specified by the excitation errors &g, g, - ..
and the initial state is always the fixed vector
(0] =(1,0,0,...). For brevity, we have absorbed 27 into
Cos Gpo e - - and used Vg = oe,, where o is the interaction
constant and €y Cpy v - the Fourier coefficients of the
crystal potential.

The formal solution of (1), namely

S = exp(iMz), 4)
may be reduced using the general resolvent

. 1 [exp(irz)
exp(iMz) = E% M —M

to the form

da (5)
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S = % P, exp(ir,z), (6)

k=1

where P,, the projectors into the eigenspaces of M (and
S), are explicit functions of M and the roots of the
characteristic equation (3):

M — a1

Pk=1"[Ak_M- (7)

I#k=1

These expressions, especially (6), (7) and various
forms of (5), have proved very convenient and powerful
in deriving series solutions (Hurley et al., 1978) in terms
of the invariants %, %,, .. ., and the components of M.
Once the scattering matrix is available, the wave func-
tion for any beam (g say) is given by

= (g1510), ®)

where (g| = (0,1,0,...).
For N =2, we obtam from (6), (7) and (8) the two-
beam wave function in the form
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When the roots XA, A, are evaluated explicitly from (2)
and (3), we find for the two-beam intensity the well
known expression

, 4sin’[(z2/2)(8* + 4|V, )]

I, =ulu
&4V P

8 878

(10)

=Vl

3. Centrosymmetric crystals

We notice that the two-beam intensity (10) is invariant
under the substitution ¢ — —¢, that is, is symmetrical
about ¢ = 0. Since in a convergent-beam pattern ¢ plays
the role of a directional coordinate, this symmetry is
readily detectable experimentally. This forms the basis
for a simple three-beam inversion in the centrosym-
metric case where we may choose M to be real as well as
Hermitian, so that, in (2), V= V; =V
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Fig. 1. A convergent-beam pattern computed using equation (8) (and the appropriate modifications for beam /4 and the central beam) with N = 3
for the parameters V, = 0.64, V;, = 0.9, V,_, = 1.4 and z = 20. The horizontal axis is {, and the vertical axis ¢,. The pattern is drawn with the
reciprocal-lattice vectors g and & perpendicular and equal, simply for convenience. The centre of each disc is the point {, = ¢, = 0 and the
radius is 4. For an accelerating voltage of 100 kV, these parameters are equivalent to e, = 6.4, ¢, = 9, ¢,_, = 14 V (the last value made large to
emphasize the displacement of the point of confluence), a thickness of 2164 A and the excitation error at the disc edge being 0.00588 A™'. The
continuous lines mark the loci of equation (17) and the dashed lines in discs g and 4 mark the locus (16). Three-beam calculations along these
lines are displayed in plots adjacent to the respective discs and are clearly two-beam in character. The displacements of the centres of these
distributions in beam g is 1.97 along the ¢, axis as predicted by the value of G for the above parameters.
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We now seek loci in ¢, §, space along which the
three-beam intensities reduce to two-beam form.
Geometrical features of these loci then yield the
amplitudes V,, V,,, V,_, and their relative phase.

Specifically, the wave function for the g beam appears
in the three-beam case as [cf. (6), (8)]

u, = exp(ir;z)(g|P,10) + exp(ir,z)(g|P,|0)

+ exp(ir;2)(g]P5]0), (11
which will reduce to two-beam form if
0 = (gIP,|0) = (gIM?[0) — (A, + A3)(gIM|0),  (12)

where we have used (7) with N = 3, k =1 to evaluate
P,. Using the explicit form (2) for the matrix M, the
condition (12) may be reduced to

AM=&,— thg—h/vg' (13)

The root A, must also satisfy the characteristic equation
(3) for the case N = 3, that is,
A=A+ S0 - =0. (14)

Eliminating A, from (13) and (14) and using (2) to
evaluate X,, ¥, and X, explicitly, we find, for real M, the
condition

0=0+C—-06)s,— ¢ +G—H), (15)

where

C=V\Vi/Ve H=VYV, JVi C=VV,/V,,.

Hence, if the point (¢, ¢,) lies on either of the straight
line loci
G=G-C (16)
or
Cg_fth_Gv 17)

the three-beam wave function (11) reduces to a two-
beam form, which may be expressed by

2isin[(z/2)(A; — A5)]

ug exp[—(i/2)z(A, + A3)l =V,

(18)

At the intersection of the lines (16) and (17), we have
the point

(,=H-C=T,,
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5, =G—-C=T,, (19)

at which two roots of the cubic equation (14) are equal,
that is, we have a confluence (Gjgnnes & Hgier, 1971).
It is important to note that, at all other points on the
loci (16) and (17), equation (14) is not confluent but,
nevertheless, beam g reduces to the two-beam form (18).
The further reduction of this form is different for the
two loci; for the line (16), we find that

THE ROLE OF PROJECTION OPERATORS

(o =23 = (5, — G +4(V + V), (20)
whereas for the line (17)
(b =2l = (L + G +4(;+ VD). (D)

From (20), (21) and (18), we see that the centres of the
two-beam distributions are displaced equal and opposite
distances G along the ¢, axis. Similarly, in the & beam
there are two two-beam loci that may be obtained by
interchanging the subscripts g and 4, an interchange that
leaves line (17) invariant. This is shown in the calculated
pattern of Fig. 1, which also indicates that (17) is the
only two-beam locus in the central beam.

Thus, in a three-beam diffraction pattern for a
centrosymmetric crystal, we may identify the unique
pair of symmetry lines in either diffracted beam and
hence determine I';, I', and G; the sign of G phases the
structure amplitudes and their moduli are given by

Vé = (G - Fz)(G +I - Fz)v VZ = G(G - Fz)s
Vi =G(G+T, —T),). (22)
The loci in the other diffracted beam and the single locus
in the central beam provide checks. The convergent-
beam pattern of intensity at a single unknown thickness

is sufficient for the inversion in this case (Hurley &
Moodie, 1980).

4. Noncentrosymmetric crystals

Here it is impossible to satisfy the basic condition (13)
since A; and ¢, are necessarily real whereas V- v, Ven
is, in general, complex. A different strategy is needed for
the inversion. The intensity [, = uzu, of the g beam may
be obtained from (11); subtracting the corresponding
expression for the setting where M is replaced by M’
(= M*), we obtain

- T
A=1(M)—1,(M")

= 4K[sin(p,2) + sin(i,2) + sin(uzz)l/ i poits,  (23)

where we have put pu; = A, — A3, V, = v, exp(if,) etc.
and

K =v, ,v,v,sin@,_, — 0, +0,). (24)
We now use the expression
= 2(=0,)"" cos[(0 + 2n7) /3]
forn =0, 1, 2, with
6 = cos'[(1 4 2702 /403)"*]

for the w’s in terms of the coefficients of the reduced

characteristic equation of M,
A+ ok —0;=0, (25)

and the expansion (Watson, 1944)
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o0
sinfz cos(0)] = 2 Y (—1)" T4, (2) cos[(2k + 1)6],
k=0
to transform (23) to the form
o0
A= _12K(_‘72)73/2 Z (_1)p16p+3[2Z(_02)1/2]
p=0
x cos[(2p + 1)6]/cos(0).
The quantity (26) may be determined experimentally, at
least in principle, as a continuous function A(&,, ¢, z) of
the excitation errors ¢,, ¢, and the thickness z. The
inversion may then be achieved as follows:
(i) In a plot of —1z7*A(0, 0, z) as a function of z2/4
for small values of the thickness z, the limiting value for

zero thickness yields K of equation (24), whereas the
initial gradient gives the quanity Ko, and hence

0,(0,0) = —(vi + vi + vi,h). (27)

(ii) From (3), (14), and (25), we now obtain o, for all
values of the excitation errors {, (= x) and ¢, (= y)

0y =%, =31 =30y — 2 — ) = (p +vi +ve )
(28)
(iii) Using the orthogonality relations (Watson, 1944)

(26)

o0

Of[]6p+3(f)]6q+3(f)/t] dt=34,,/(12p +q),

we may extract the individual terms in the expansion

(26):

cos[(2p + 1)6]/cos(0)
= [(~1Y/(12p + )/K] [ AWy 22(=0,)")/z dz.
0
(29)
In particular, we obtain, for p=1,

cos(36)/cos(0) = —3 + 4 cos’(#) and hence the value of
cos(f) and the invariant o, for all values of x (= ¢,) and

y(=¢).

03 =5 (2x° — 3yx* — 3y*x + 2y°)
+2cos(0, — O, — 0,)v,v,_ vy
+3x(v; +vi_, —2vp)

— %y(ng - vifh —v2). (30)

(iv) We now substitute y = mx + c in (30) and choose

m to eliminate the cubic term in x. This yields m = —1,2
or % For each of these directions, the variation of o with
x is expressed as a perfect square. Thus, for m = —1, we

find 303 = c(x — x,)* + constant, where
x. = zle+3(vj, = vp)/cl. (31)

The quantities ¢ and x, appearing in (31) may be iden-
tified by an inspection of a contour plot of o5(x, y), so
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that an analysis of the case m = —1 yields the value of

vi — vZ. Similarly, the cases m = 2 and { lead to values of

Vi — vg,h and vj — v;_,, respectively. These quantities,
together with K of (24) and 0,(0, 0) of (28) give us v,, v,
v,_; and the single phase angle 0,_, — 6, + 6,. This is all
the information about the V’s contained in A(¢,, ¢, 2).
By spanning the whole reciprocal lattice by a sequence
of three-beam settings, all the v’s and their phases ()

may be determined.

5. Conclusions

The centrosymmetric scattering problem can be inverted
in the three-beam approximation and from convergent-
beam data — that is, knowledge of the intensity distri-
bution as a function of angle of incidence — to recover
explicitly and uniquely all crystallographic parameters,
Ve Vs Vi, and the origin-independent phase.

The applicability of the technique to structure
analysis will be described in another publication but, in
summary, it can be claimed, at least in favourable cases,
that the technique is practical.

APPENDIX A

Mathematica was used to check the algebraic manipu-
lations in §§3 and 4 and to generate Fig. 1. The asso-
ciated algebra is available as a Mathematica Notebook
from ftp:/ftp.physics.uwa.edu.au/pub/EMC/
3BeamAlgebra.nb.

Mathematica is a registered trademark of Wolfram
Research. For information on Mathematica, visit the
Wolfram Research home page at http://www.
wolfram.com/.

Regretfully, one of the authors, Dr Andrew Hurley,
passed away during the progress of this work.

AWS] is priveleged to dedicate his contribution to
Professor A. F. Moodie, a fine teacher, supervisor and
colleague, on the occasion of his 75th birthday.
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